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ABSTRACT
Clusters of atoms in dense gold vapor are studied via atomistic simulation with the classical molecular dynamics method. For this purpose,
we develop a new embedded atom model potential applicable to the lightest gold clusters and to the bulk gold. Simulation provides the
equilibrium vapor phases at several subcritical temperatures, in which the clusters comprising up to 26 atoms are detected and analyzed. The
cluster size distributions are found to match both the two-parameter model and the classical nucleation theory with the Tolman correction.
For the gold liquid–vapor interface, the ratio of the Tolman length to the radius of a molecular cell in the liquid amounts to ∼0.16, almost
exactly the value at which both models are identical. It is demonstrated that the lightest clusters have the chain-like structure, which is close
to the freely jointed chain. Thus, the smallest clusters can be treated as the quasi-fractals with the fractal dimensionality close to two. Our
analysis indicates that the cluster structural transition from the solid-like to chain-like geometry occurs in a wide temperature range around
2500 K.
Published under license by AIP Publishing. https://doi.org/10.1063/5.0010156., s

I. INTRODUCTION

Metal clusters are a subject of extensive research due to their
numerous important applications. Among the most interesting
objects are the gold clusters due to their key role in nanoscale elec-
tronics and optical and medical diagnostic devices. Metallic bonds
of atoms comprising such clusters stipulate their peculiarities that
are extensively studied both experimentally and theoretically.1,2 The
ground-state configurations and binding energies of metal clusters
at zero temperature are calculated on the basis of density functional
theory (DFT), which is commonly used for bulk metals. Never-
theless, extensions of DFT applicable to the nanoscale objects are
developed.3–9 Alternative jellium models of small metal clusters are
proposed as well.10,11

Metal clusters can be produced by nucleation in expanding
metal vapor, which is typically formed in the laser-induced vapor-
ization12,13 and ablation of metals into vacuum14,15 and liquids.16,17

Since the vapor temperature in such high-power processes is ini-
tially well above the melting point and it drops rapidly below the

critical temperature, the “hot” clusters of different sizes are pro-
duced and can grow up to the nanometer-sized particles. Because
the cluster energy, geometry, and size distribution at several thou-
sand K are difficult to obtain via experiment, the atomistic simu-
lation of such clusters is urgent. This includes studying the kinetic
processes involving cluster formation in the metal vapor18,19 and
the cluster thermodynamic properties.20–22 Note that both clus-
ter kinetics and thermodynamics are essential for the nucleation
theory.

We are focusing on the equilibrium clusters present in suffi-
ciently dense subcritical vapor near the saturation line. The frac-
tion of clusters in such vapor must be sufficient for their analysis
based on the classical molecular dynamics (MD) simulation. More-
over, the thermodynamic properties of the vapor with clusters are
typically defined by the clusters comprising up to tens of atoms.
A good approximation for the dense vapors is the model of an
ideal mixture of clusters (see Ref. 23 and references therein). Clus-
ters in the equilibrium and supersaturated dense argon-like vapor
at constant pressure and temperature were extensively studied (see,
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e.g., Refs. 24–26). It was found that the lightest argon-like clus-
ters interacting via the Lennard-Jones pair additive potential have
the structure of intersecting chains, and this made it possible to
estimate their partition function within the framework of virtual
chain approximation25 and to find the chemical potential for the
cluster comprising arbitrary number of atoms up to the macro-
scopic droplet on the basis of the two-parameter model (TPM). The
latter suggests that the cluster chemical potential is a linear func-
tion of the numbers of core and surface atoms in a cluster.26,27

However, to the best of our knowledge, no systematic study of
dense metal vapors and the cluster structure can be found in the
literature.

The objective of this work is to investigate the dense gold vapor
and the equilibrium clusters present in it, as gold is among the most
demanded metals in production of nanoparticles and other appli-
cations. We perform both the MD simulation of the dense gold
vapor in the phase states close to the saturation line in the tem-
perature range from 4000 K to 6000 K and the model analysis of
such a system. To observe the clusters comprising 2 to ∼30 atoms,
one has to simulate a MD system of about 106 particles. Since an
appropriate interatomic potential is required for realistic simulation
of gold vapor, a new embedded atom model (EAM) potential was
developed. Note that MD simulation of gold clusters using another
EAM potential was performed in recent studies.18,19 In accordance
with TPM, an appropriate EAM potential that is capable of describ-
ing metal clusters of arbitrary sizes must result in the experimental
dimer binding energy and the surface tension, in addition to other
properties of a bulk metal. Thus, it is essential to have those data in
the EAM fitting database.

MD simulation of dense gold vapor enables the cluster size dis-
tribution to be calculated and then to be compared with the known
results obtained with the cluster models. Surprisingly, a very good
agreement between the cluster size distributions from MD, TPM,
and the classical liquid drop model (LDM) with the Tolman cor-
rection points to the fact that the Tolman length must be relatively
small and positive for gold, and it is very close to the particular Tol-
man length at which TPM and LDM almost coincide. A comparison
between calculations and experimental pVT data for the dense gold
vapor justifies applicability of the developed EAM potential and con-
sistency of MD results with those obtained from the cluster models
and the model of ideal cluster mixture.

Detailed information on clusters from MD simulation suggests
the next step, at which the structure of the lightest clusters is under
investigation. The most vital question is whether metal clusters with
the bond type entirely different from that of the argon-like clusters
can exist in chain-like configurations. For the multi-body interac-
tion between atoms in metals, which leads to sharp saturation of
the binding energy per atom with the increasing number of clus-
ter atoms, it is reasonable to introduce a special characteristic of
the cluster structure determined as an ensemble-averaged ratio of
the maximum to average distance between the atoms pertaining to
the same cluster. This structure parameter as a function of the clus-
ter size is an effective characteristic for the lightest clusters, which
are, on average, sufficiently homogeneous in space. A comparison
between the structure parameters calculated for the clusters and
for different structures with the known fractal dimensionality that
comprise the same number of atoms (linear chain, freely jointed
chain, and a solid sphere) is a way to estimate the cluster fractal

dimensionality. Because the clusters are the finite-size objects, they
can only be treated as the fractal fragments or quasi-fractals.

Our analysis shows that the fraction of chain-like cluster con-
figurations as compared to the solid-like (compact) ones is superior
for the lightest clusters comprising less than ten atoms at tempera-
tures higher than 4000 K. Thus, with respect to the fractal structure,
there is no principal difference between gold and Lennard-Jones
clusters. As for the heavier gold clusters, such fraction is no good
characteristic because of their solid core that breaks the cluster spa-
tial homogeneity. Existence of chain-like gold clusters in the vapor
can be illustrated by the bond-length distribution function (BDF)
calculated for different cluster sizes: for the lightest clusters at higher
temperatures, the second BDF maximum is almost extinct, which is
typical for the chain structure.

The chain-like structure that can be observed at high temper-
atures changes to the solid-like one as the temperature decreases.
Therefore, a structural transition between these two structures takes
place in some temperature range, where a competition occurs
between the cluster potential energy and the accessible phase space
volume (entropy). The estimates of changes in these characteristics,
as the structure passes from the chain-like to solid-like one, per-
formed in the way similar to that discussed in Refs. 23 and 25 lead to
the conclusion that the transition temperature for gold vapor must
be noticeably higher than the gold melting temperature and can be
roughly estimated as 3000 K. In contrast, for the argon-like clusters,
the transition temperature is appreciably lower than the temperature
of solid melting.

The paper is organized as follows. In Sec. II, the procedure of
MD simulation and the main results are briefly discussed. Section III
is devoted to a theoretical background: the virtual chain approxima-
tion and TPM are discussed, and the resulting vapor compressibility
factor and the Tolman length for liquid gold are estimated. In addi-
tion, it is established that for the obtained Tolman length, TPM is
almost identical to LDM. In Sec. IV, the cluster fractal structure and
the structural transition are discussed. The main results of our work
are summarized in Sec. V. In the Appendix, development of the new
EAM potential is discussed in detail.

II. MOLECULAR DYNAMICS SIMULATION
In this section, we will treat the equilibrium dense gold vapor

in the subcritical region at temperatures well above the gold melting
temperature. Our objective is to investigate the clusters present in
the vapor and their effect on the vapor non-ideality. To accurately
describe this system, our MD simulations employ a new interatomic
potential for Au using EAM. This potential is an advanced revision
of Au EAM potential developed in Ref. 28 using the stress-matching
method. In addition to the bulk properties of solid gold, including
cold stress tensor components, the surface tension of molten gold
and the energy of the dimer cluster were included in the fitting
database (see details in the Appendix). The EAM potential we use
does not include an explicit angular-dependent part, and therefore, it
cannot take into account the electron spin–orbit effect. However, it is
clearly seen from Table III that the difference between the EAM cal-
culation and the DFT calculation that includes this effect is notice-
ably smaller than the temperature (∼0.5 eV) that we prescribe to the
treated system. The energy difference between EAM and different
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DFT versions is on the same order of magnitude as that between
different DFT versions, and all these differences do not exceed the
system temperature. Thus, one can conclude that the EAM potential
we have developed can provide a sufficient accuracy for treatment
of dense metal cluster vapors at temperatures well above the melting
point.

All MD simulations are performed with our in-house parallel
code MD-VD3 utilizing the Voronoi dynamic domain decomposi-
tion.29,30 Atoms of the gas are placed in the MD cubic box with the
dimensions Lx = Ly = Lz , and the periodic boundary conditions are
imposed along all three dimensions. Initially, a single crystal sample
with the gas density a few percents less than the equilibrium vapor
density on the liquid–vapor binodal line Ts(ρ) at a given tempera-
ture is generated to ensure that this gas is not supersaturated. Such
a precaution is required because the saturated vapor density pre-
sented in the Appendix was calculated with an accuracy of 1% or
better.

Then, this sample is thermalized at the chosen temperature
using the Langevin thermostat during a time long enough to reach
an almost equilibrium state. At the next stage, the NVE simula-
tion without a thermostat is performed until the equilibrium clus-
ter distribution is established. During this stage, the temperature
grows slowly by a few degrees while the potential energy drifts down
until it reaches a plateau. After this stage, the final production sim-
ulations are performed during several tens of nanoseconds with
the gas parameters listed in Table I. During the simulation time
tsim, all atom coordinates and momenta are saved each 19.2 ps for
further cluster analysis. Such time frame separation is sufficiently
long to ensure statistical independence of the saved data for each
atom.

For each time frame, we perform the cluster analysis of the
vapor, which enables one to isolate individual clusters. We used
the Stillinger definition of a cluster31 according to which an atom
pertains to the cluster if it has at least one neighbor atom at the
distance less than rb pertaining to the same cluster. Hereafter, the
number of such atoms k defines the cluster size. It was demon-
strated in Ref. 32 that there exists some range of rb, in which the
cluster size is almost independent of rb. In this simulation, we set
rb = 0.4057 nm, thus providing a reliable cluster definition. Typ-
ical configurations of the detected clusters are shown in Figs. 1
and 2. The diameter of circles representing atoms corresponds to
the interatomic spacing in the gold fcc lattice at T = 0 calculated
using the EAM potential developed in this work. For each atom, the
coordination number is defined as the number of its nearest neigh-
bors within a sphere of the radius 1.11rb that demonstrates, most
vividly, the peculiarities of different cluster configurations. It is seen
that for k = 7, two different configurations occur in the vapor, the

TABLE I. MD simulation parameters: temperature T, pressure p, total atom number
density n, number of atoms Na, cubic box dimension, and simulation time tsim.

T (K) p (MPa) n (nm−3) Na Lx (nm) tsim (ns)

4006 0.465 0.008 97 415 292 359 86.6
5005 3.899 0.064 9 530 604 201 68.6
6004 16.16 0.250 442 368 121 68.9

FIG. 1. Typical configurations of the lighter clusters (k = 7) at T = 6004 K in (a)
the chain-like and (b) the solid-like states. The atom coordination number is color-
coded (see legend). The circle diameter is 0.287 nm.

chain-like and the compact one. The coordination numbers for the
cluster (a) are low with two one-neighbor atoms at the cluster end
points, which is typical for the chain-like structure, while for the
cluster (b), such atoms are absent, and the coordination numbers
are noticeably greater. This is indicative of the fact that the lightest
clusters, which can undergo the structural transition from solid-like

FIG. 2. Typical configurations of the heavier clusters at T = 6004 K, (a) k = 16 and
(b) k = 26. The atom coordination number is color-coded (see the legend). The
circle diameter is 0.287 nm.
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to chain-like configurations (see Sec. IV), are on the average in some
mixed configurational state. Instead, the heavier clusters, k = 16 and
k = 26, seem to occupy similar configurational states, which are
neither chain-like nor solid-like. Note that the coordination num-
bers are greater near the centers of these clusters. Such shapeless
configurations are similar to those observed for the Lennard-Jones
clusters.24

We have analyzed about 3000 time frames for each set of the
state parameters corresponding to three temperatures. This provides
sufficient statistics to estimate the number densities of the clusters
of different sizes nk, i.e., the cluster size distributions (Fig. 3). It
is seen that nk increases sharply with temperature. The fraction of
atoms bound in the clusters is high enough to have an effect on the
vapor non-ideality or on the compressibility factor Z (Fig. 4). It is
of interest to compare Z = psM/ρsT calculated from the MD simu-
lation pVT data for a two-phase system with that obtained from the
cluster model of a dense vapor. This model implies that the nonideal
vapor can be treated as an ideal mixture of clusters.23,26 Hence, in
this model, the vapor non-ideality is reduced to the formation of the
clusters, and the vapor compressibility factor,

Z =
∞

∑
k=1

nk(
∞

∑
k=1

knk)
−1

, (1)

is always less than unity. Figure 4 shows such a comparison. Cal-
culation of the compressibility factor based on the cluster number
densities determined from MD simulation and formula (1) is in a
close agreement with the direct calculation of Z. To make sure that
the proposed model can be applied for real dense gold vapor, one
has to compare the obtained results with experiment. In view of the
fact that there exist no data on the cluster composition of gold vapor,
we can only use the pVT data based on the wide-range equation of

FIG. 3. Number densities of clusters in the vapor as a function of the cluster size
for T = 4006 K (blue lines and circles), 5005 K (green lines and squares), and 6004
K (red lines and triangles). Solid lines indicate calculation using TPM and dashed
lines, LDM; dots represent the results from MD simulation.

FIG. 4. Compressibility factor of gold vapor at the saturation line as a function of
temperature from MD simulation of the vapor and formula (11) (circles) and from
MD simulation of a two-phase system (solid line). Calculation using (15) is shown
by a dashed line; the dotted-dashed line indicates the equation of state (16). pVT
data taken from the wide-range EoS33 are shown by the dotted line.

state (EoS).33–36 A satisfactory agreement between the compressibil-
ity factor from both sets of MD data and the pVT data33–36 from the
wide-range EoS suggests adequacy of such an approach.

III. CLUSTER SIZE DISTRIBUTION AND THE TOLMAN
LENGTH
A. Virtual chain approximation and the cluster
partition function

To provide a theoretical interpretation of the cluster size dis-
tributions obtained from MD simulation, we will discuss the virtual
chain approximation of the smallest clusters that are formed at equi-
librium in the dense vapor in the subcritical region. Consider a small
cluster of the size k. As its temperature is increased, its entropy
increases. The latter depends sensitively on the cluster structure,
namely, on the fractal dimension one can prescribe to a cluster of
a certain size because it defines the phase space volume accessible
for the cluster atoms. Thus, for the freely jointed chain in 3D space
(fractal dimension Df = 2), the accessible volume is superior to that
for the crystal-like cluster (Df = 3), although its potential energy is
lower than that for the cluster with the structure close to the freely
jointed chain. At sufficiently high temperature, the gain in the cluster
entropy as it passes from the Df = 3 to Df = 2 structure can compete
with the loss in its potential energy. Thus, the structural transition
occurs, which takes place in a finite temperature range since the
cluster is a finite object.25

Transition to the chain-like structure suggests that the number
of bonds is close to its minimum, i.e., one can treat the cluster as a
set of intersecting chains with the minimum number of bonds k − 1.
Obviously, this model is limited by the cluster size; in fact, k ≲ 10.
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In this approximation, the cluster partition function,

Z(k)c =
1
−λ 3k ∫ ⋯∫

′

exp[−
U(r1, r2, . . . , rk)

T
]dr1 . . . drk, (2)

where −λ = (2πh̵2
/MT)1/2 is the atom thermal wavelength, h̵ is the

Planck constant, M is the atom mass, T is the temperature in the
energy units (Boltzmann’s constant is set to unity), U(r1, r2, . . ., rk)
is the potential energy of a cluster, r1, r2, . . ., rk are the radius-vectors
of atoms, and the primed integrals exclude identical states from the
integration space, is factorized:25

Z(k)c =
V
−λ 3k ∫ ⋯∫

′ k−1

∏
i=1

exp[−
u(ri)
T
]dr1 . . . drk−1

=
V
−λ 3k {∫

′

exp[−
u(r1)

T
]dr1}

k−1

=
V
−λ 3k [Z2 exp(−

D
T
)]

k−1
, (3)

where V is the system volume, u(r) is the interatomic potential,
which is assumed to be the pair, additive, and short-range one, D
is the dimer binding energy, and Z2 is the internal partition function
of a dimer,

Z2 = exp(
D
T
)∫

′

exp[−
u(r1)

T
]dr1. (4)

Then, the cluster chemical potential μk in the vapor, which is
assumed to be an ideal mixture of atoms and clusters of different
sizes, is represented in the following form:

μk
T
= ln(nkV) − lnZ(k)c = ln(nk−λ

3
) + (k − 1) ln(K2−λ 3

), (5)

where nk is the number density of clusters of the size k and

K2(T) ≡
n2

1

n2
=

1
−λ 3Z2

exp(−
D
T
) (6)

is the equilibrium constant of the reaction of dimer formation.
We use the mass action law for the reaction of cluster formation

in the vapor μk = kμ1, where μ1 = T ln(n1−λ 3) is the chemical potential
of an atom, and (5) to derive the equilibrium cluster distribution
over sizes nk = nk1K

1−k
2 , which can be rewritten as follows:

nk = n1 exp(−
ΔΦk

T
), (7)

where

ΔΦk = (1 − k)T(ln
n1s

K2
+ ln S) (8)

is the work of formation for the cluster of the size k, S = n1/n1s, and
n1s is the number density of monomers at the binodal (at saturation
line).26 In what follows, we will denote the quantities at the satura-
tion line by the subscript s. Alternatively, distributions (7) and (8)
can be deduced from the assumption concerning the linear depen-
dence of μk on k:23,27 μk = T ln pk + ζk(T) and ζk(T) = A(T)k + B(T),
where pk = nkT is the partial pressure of clusters of the size k, and
ζk(T), A(T), and B(T) are functions of the temperature. This model

does not require that the interatomic potential be pair additive, i.e., it
can be applied for metal clusters, albeit it is rigorously justified solely
for pair additive short-range potentials at sufficiently high temper-
ature. Our MD simulation makes it possible to check if the virtual
chain approximation (3) is reasonable for gold clusters at sufficiently
high temperatures when the chain-like cluster structure dominates
over the solid-like one.

In the opposite limit of a large cluster, the latter is a macro-
scopic droplet whose work of formation is given by the classical
nucleation theory (CNT),37–39

ΔΦk = 4πσr2
ℓk

2/3
− (k − 1)T ln S, (9)

where σ is the surface tension of a flat liquid–vapor interface,
rℓ = (3/4πnℓ)1/3 is the radius of a molecular cell in the liquid,
and nℓ is the atom number density in a liquid phase. A simple
approximation, the TPM, unifies (8) and (9),26,27

ΔΦk = 4πσr2
ℓγ(k)k

2/3
− (k − 1)T ln S, (10)

where σγ(k) is the size-dependent cluster surface tension, γ = (2/3)(λ
+ 2δ)−1(k0 − 1)k−2/3, and k0(k) is the root of the equation,

k0 =
1
2
(λ + 2δ)[3(k − k0)

2/3 + 3λ(k − k0)
1/3 + λ2

] (11)

if k ≥ (λ2/2)(λ + 2δ) and k0 = k if k ≤ max{(λ2
/2)(λ + 2δ), 2}. Here,

two parameters are introduced, namely, the reduced Tolman length
δ = lT/rℓ, where lT is the Tolman length, and the reduced width
λ = ls/rℓ, where ls is the width of the cluster surface layer. The
parameters δ and λ conform to the relationship27

δ +
λ
2
= −

4π
3

σr2
ℓ

T ln n1s
K2

(12)

that relates these parameters to the properties of a macroscopic sub-
stance and to that of a dimer. Equations (10) and (11) are indeed
equivalent to the assumption that a cluster can be represented as a
core of the internal atoms surrounded by a layer of the surface atoms
whose width is independent of the cluster size.27

In the CNT, the clusters are prescribed the properties of a
macroscopic liquid droplet such as the density and surface tension.
In the most advanced self-consistent version of CNT,40 a correction
factor is introduced that normalizes the cluster distribution to the
monomer number density at k = 1. If the Tolman correction for
the size dependence of the surface tension41 is properly taken into
account, then the work of cluster formation (9) can be written as
follows:

ΔΦk = 4πσr2
ℓγ̄(k)k

2/3
− (k − 1)T ln S, (13)

where γ̄(k) = k−2/3
(k2/3

− 1)(1 − 2δk−1/3
) is the Tolman size cor-

rection factor. In what follows, we will term (13) the LDM. Note that
this expression is fully compatible with the Gibbs–Tolman thermo-
dynamics of a curved liquid–vapor interface.42 A question arises if
there exist such δ and λ that LDM is most effective in a wide range
of the cluster sizes including the smallest ones. In other terms, when
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are small clusters almost “classical” or when are they very close to the
macroscopic droplets in their thermodynamic properties? If this is
the case, TPM (10) and (11) and LDM (13) are not different, i.e., the
equality γ(k) = γ̄(k)must hold. For different ks, this equality defines
a family of curves in Fig. 5. As is seen, at λ > 1.1, the curves almost
coincide, i.e., the relation γ(k) ≃ γ̄(k) is satisfied for the smallest
sizes irrespective of k. To ensure consistency of this relation in the
range of large k, we adopt the relation26

5
4
λ2
= 12δ2 +

2
λ + 2δ

, (14)

that ensures identity of the works of the critical cluster formation in
the supersaturated vapor (at S > 1) calculated within the TPM and
LDM approaches. Relation (14) means that the second-order term
of the expansion of the work of formation in inverse powers of the
cubic root of the critical cluster size vanishes. The cross at the curve
k = 2 whose coordinates λ = 1.15 and δ = 0.157 satisfy (14) indicates
a special pair of parameters for which TPM and LDM must yield the
same results in a wide range of the cluster sizes from two to infinity.
Thus, from comparison between TPM and LDM, one can conclude
that for very small cluster sizes, the Tolman size correction is valid
solely for δ = 0.157, and such Tolman reduced length is indica-
tive of the fact that clusters can be treated as almost classical liquid
droplets.

In the above-discussed model, the most “classical” cluster is
associated with the formation of the core at a minimum cluster size.
We estimate crudely the minimum threshold of the core formation
as (λ2/2)(λ + 2δ) = 1. Then, we borrow a value (λ + 2δ)/2 ≃ 0.8 typical
for most substances from Ref. 27 to derive λ ≃ 1.12, which matches
closely the cross in Fig. 5.

FIG. 5. Curves along which the equality γ(k) = γ̄(k) holds for k = 2 (solid line), 3
(dashed line), and 5 (dotted line). Dots represent the best fit of Eqs. (10) and (11) to
the cluster size distribution from MD simulation for gold at T = 4006 K (diamond),
5005 K (square), and 6004 K (circle); see Table II. Cross indicates the point at the
curve k = 2 at which condition (14) is satisfied, i.e., the clusters are almost classical
in the entire size range.

B. Model compressibility factor
Based on the cluster size distributions (7), (10), and (11), one

can calculate the vapor compressibility factor. If we use the model of
an ideal mixture of clusters, Eq. (1) can be re-written in the following
form:23

Z = [
∞

∑
k=1

Sk−1
(
p1s

K2
)
k0(k)−1

][
∞

∑
k=1

kSk−1
(
p1s

K2
)
k0(k)−1

]

−1

, (15)

where S = p1/p1s. If we assume that solely the lightest clusters with
k ≲ 10 contribute to the compressibility factor, then their size distri-
bution can be approximated by Eqs. (7) and (8). This yields a simple
equation of state,23,27

Z =
1

1 + pK−1
2

, (16)

where p is the total vapor pressure.
The vapor density ρs and pressure ps for a relatively small

liquid–vapor equilibrium system at fixed temperature Ts are
obtained along a saturation line from several MD simulations. To
maximize the number of atoms in the gaseous phase at a given tem-
perature, which is necessary to broaden the range of detectable clus-
ter sizes, we performed another set of large-scale single-phase MD
simulations. To avoid simulation of supersaturated vapor at some
fixed Ts, an equilibrium system was generated with the prescribed
vapor density ρ < ρs and pressure p < ps(Ts) slightly below the satu-
ration line. From the data of this simulation set, the cluster number
densities nk and their partial pressures pk are determined, which
makes it possible to calculate, in particular, the equilibrium constant
K2 = n2

1/n2. However, the monomer pressure p1s is still unknown.

Since ρs = M
∞

∑
k=1

knks, it can be found from the transcendental

equation,

p1s =
Tρs
M
[
∞

∑
k=1

k(
p1s

K2
)
k0(k)−1

]

−1

. (17)

Then, we can determine the parameters δ and λwhen fitting the clus-
ter distribution over sizes nk from MD simulation by the TPM (7),
(10), and (11) with p1s found from (17). The obtained results allow
one to compare the compressibility factor (1) from MD simulation
with that from the theory [Eqs. (15) and (16)].

We applied the above-discussed procedure to determine both
the parameters δ and λ and the ratio S. With due regard to relation
(12), δ is a single parameter that fits the theoretical size distribution
to that obtained from MD data. In so doing, we used the satura-
tion vapor pressure, density and the surface tension calculated in
our two-phase MD simulations; K2 = n2

1/n2 was estimated using
the monomer and dimer number densities from our vapor MD sim-
ulation. The obtained results are collected in Table II. With such
parameters, the cluster size distribution from TPM is in a satisfac-
tory agreement with the MD simulation results (Fig. 3). Here, we
used Eq. (11) in the entire range 1 < k ≤ 26 to smoothen the curve.
It is noteworthy that LDM can be scarcely distinguished from TPM.
The reason for this coincidence is the values of δ and λ that lie in
the vicinity of the curves of identity of TPM and LDM in Fig. 5. At
T = 4006 K, this pair of parameters lie very close to a point of such an
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TABLE II. Reduced parameters δ and λ and the ratio S for gold vapor at different
temperatures T from MD simulation.

T (K) δ λ S

4006 0.1675 1.0877 0.9576
5005 0.1335 0.9517 0.9910
6004 0.1317 0.7125 1.000

identity at arbitrary k. Apparently, the visible disagreement between
the simulation and theory in Fig. 3 and the dispersion of δ–λ points
in Fig. 5 at T = 6004 K seems to arise both from the worse applica-
bility of the “core + surface layer” model discussed in Sec. III A and
from cluster mixture nonideality ignored in the ideal cluster mixture
model. Hence, the accuracy of the theory decreases with the increase
in temperature. Nevertheless, one can conclude that gold clusters
seem to be fully classical in the entire range of their sizes. This “clas-
sical” behavior of light clusters (δ ∼ 0.1), which is not typical for,
e.g., the Lennard-Jones clusters, is the result of a fast saturation of
the atom binding energy specific for metals. Thus, similar behavior
and the close Tolman lengths could be expected for most normal
metals.

The theoretical equations of state are compared with those from
our MD simulation and with the wide-range EoS33 in Fig. 4. It is
seen that Eq. (16) yields greater Z than the TPM model (15) and
overestimates Z as it must because in this approximation, larger
clusters are ignored. However, in the limited temperature range, it
can provide a satisfactory accuracy. An agreement between the com-
pressibility factor from MD simulation, the model calculation using
TPM, and the pVT data from the wide-range EoS33 indicates that the
proposed model represents the dense gold vapor adequately. More-
over, this model can be applied for nonequilibrium phenomena that
depend sensitively on the properties of light clusters such as the
vapor nucleation.

IV. STRUCTURE OF THE LIGHTEST CLUSTERS
A. Assessment of the structural transition
temperature

According to the discussion in Sec. III A, the structure of
the smallest clusters becomes chain-like (correspondingly, the TPM
model is valid) at sufficiently high temperature. This transition tem-
perature was estimated for the pair additive short-range potential in
Ref. 25 and for the saturated many-body potentials typical for met-
als, in Ref. 23. It was shown that the ratio of the probabilities Pch
and Psol to find a light cluster in the chain-like and in the solid-like
state, respectively, is equal to the ratio of cluster partition functions
in the corresponding states. The transition temperature T0 can be
estimated from the condition Pch = Psol. Simple estimates of the par-
tition functions for the lightest clusters in the solid-like and chain-
like states make it possible to write this condition in the following
form:23

exp(τ) =
τ
ε
(
a
r0
)

2
, (18)

where τ = 2εD/T0, ε = lim
k→∞
[ΔEk/(2k − 5)D], ΔEk = Ech − Esol is the

potential energy difference between the chain-like and the solid-like
state energy, a is the distance between dimer atoms at equilibrium,
and r0 is the half-width of the potential well. Equation (18) is valid
for a short-range potential (not necessarily a pair additive one), for
which (a/r0)

2
≫ 1.

We have simulated the ground state potential energies of the
gold clusters at zero temperature using the EAM potential discussed
in Sec. III A. The energy of linear cluster configurations conform
approximately to the linear dependence Ech = (1 − k)D, where
D = 2.25 eV (energy per bond Ech/(1 − k) ≃ 2 eV). The energies
per atom of solid-like clusters saturate and reach q = 3.97 eV as
k → ∞, so in this limit, Esol = (1 − k)q. Thus, we arrive at the
following estimation:

ε =
1
2
(
q
D
− 1). (19)

For gold and used EAM potential, ε = 0.382.
To estimate a/r0, we approximate the EAM potential u(r) cal-

culated for a pair of atoms (Fig. 6) by the parabolic potential ū(r)
with the hard core a − r0 and the cutoff distance a + r0 defined as
follows: ū(r) =∞ if r < a − r0, ū(r) = u′′(a)(r − a)2/2 − D for a − r0
≤ r ≤ a + r0, and ū(r) = 0 if r > a + r0 (cf. Ref. 25). It is seen that the
parabolic approximation is quite satisfactory. For the dimer of gold,
(a/r0)

2
= 19.6, i.e., u(r) is, in fact, a short-range potential. Given the

obtained estimations of ε and a/r0, the solution of Eq. (18) is τ = 5.68,
which corresponds to T0 = 3513 K. It was demonstrated in Ref. 25
that the structural transition is gradual in temperature, and it is sim-
ilar to the crossover. Thus, one can expect that, in the temperature
interval from 4000 K to 6000 K, the majority of clusters are in the
chain-like state.

FIG. 6. Interatomic potential for the dimer of gold calculated by EAM u(r) and its
parabolic approximation ū(r). Intersection of dashed lines indicates the equilibrium
interatomic distance a; rc labels the hard core distance, u(rc) = 0.
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B. Clusters as quasi-fractals
Next, we will treat the clusters as quasi-fractal objects and try to

estimate their fractal dimension Df . Since the clusters are too small
to apply common definitions of Df , we will introduce a parame-
ter that is sufficiently sensitive to Df , the ratio of the maximum to
average distance between the atoms pertaining to the same cluster
(ρmax and ρav, respectively), η = ρmax/ρav. Hereafter, this parameter
will be termed the structure parameter. The quantities ρmax and ρav
are implied to be ensemble-averaged, and then all introduced quan-
tities depend on k. To estimate Df , one has to compare the struc-
ture parameter with model cluster structures. At zero temperature,
all clusters have a solid-like structure (Df = 3). The corresponding
structure parameter will be denoted by η3. If we neglect the angular-
dependent part of the interatomic potential, then ρmax = ρav = a
for 2 ≤ k ≤ 4, where a is the equilibrium interatomic distance for
given k, i.e., η3 = 1. In the opposite limit of a large cluster (k →∞),
it is a macroscopic droplet that can be modeled by a solid sphere.
Therefore, in this limit, ρav can be estimated as the average distance
between two points of a solid sphere, which is given by the following
expression:

ρav =
∬ ∣r1 − r2∣dr1dr2

2∬ dr1dr2
. (20)

Here, integration is performed within a sphere of the radius R;
the factor 1/2 allows for the interchange of two points in the numer-
ator of (20). Calculation of the integrals in (20) yields ρav = (36/35)R.
Since ρmax = 2R, we have η3(∞) = 35/18. In the intermediate range,
4 < k <∞, we performed simulation of the simple cubic crystal lat-
tice with a constant spacing confined to a sphere and used the Padé
approximation of the simulation results,

η3(k) = (
35
18

k + b)(k + b +
34
9
)
−1

, (21)

which satisfies the boundary conditions η3(4) = 1 and η3(∞) = 35/18;
the constant b = −2.91 was found from the best fit condition for
4 ≤ k ≤ 100. In such an approximation, the shell effect is smeared
as well as for a macroscopic liquid droplet. The simulation results
shown in Fig. 7 indicate that, in the cluster size range accessible for
MD simulation, η3(k) is yet noticeably different from its asymptote.

For comparison, we select a linear cluster configuration with
the constant interatomic spacing a (Df = 1) as a cluster struc-
ture alternative to the solid-like one. The average distance is calcu-
lated by consideration of all pairs of the distances between atoms,
ρav = a(k+ 1)/3, while the maximum distance is ρmax = a(k− 1). Then,
the corresponding structure parameter η1 for a linear cluster is

η1(k) = 3(1 −
2

k + 1
). (22)

The asymptote of this parameter is 3, but in the interval 2 ≤ k
≤ 26, it increases sharply (Fig. 7).

As a model of the fractal object with Df = 2, we have selected
the freely jointed chain with the fixed distance between successive
atoms and the angles between the successive bonds uniformly dis-
tributed between 0 and π. The corresponding structure parameter
will be denoted by η2. We simulated the chains of different numbers
of atoms using the Monte Carlo simulation. Note that the simulated
dependence η2(k) appears to be close to the median (η1 + η3)/2. In

FIG. 7. Structure parameter as a function of the cluster size for the solid-like
clusters (η3, dotted-dashed line), for the linear chain (η1, dashed line), and for
the freely jointed chain (η2, solid line); dotted line shows the solid-like cluster
asymptote. Dots indicate the MD simulation results (Sec. II) for 4006 K (squares),
5005 K (diamonds), and 6004 K (circles).

particular, the asymptote η2(∞) ≈ 2.65 is not much different from
[η1(∞) + η3(∞)]/2 = 89/36 ≈ 2.47.

The fractal properties of the analyzed clusters can be elucidated
by calculation of the structure parameter on the basis of the data
from MD simulation. The results are shown in Fig. 7. The dots cor-
responding to the lightest clusters lie somewhat lower than the curve
η2(k), which points to the fact that the clusters have a mixed struc-
ture. It is seen that the higher the temperature, the greater the η. This
means that the fraction of chain-like configurations must dominate
the solid-like ones at a temperature above the transitional one. The
clusters up to k = 26, which are the largest detected clusters, show
the same trend, but the corresponding dots lie below η2(k). Note
that for k > 10, the structure parameter is no longer a good char-
acteristic of the cluster fractal dimensionality. In fact, such clusters
are significantly inhomogeneous formations with a relatively dense
core. Strictly speaking, even the lightest clusters are inhomogeneous;
therefore, they should be referred to as quasi-fractal objects.

Although one can expect that the simulation data pass through
a maximum and then approach the solid state asymptote (dotted line
in Fig. 7), this is not the case in Fig. 7. Apparently, such a maximum
would correspond to a macroscopic droplet, whose size amounts to
hundred atoms according to various estimates. For sufficiently large
clusters, the size dependence of η is defined by the amplitude of the
thermal capillary oscillations proportional to (lnR)1/2, where R is the
cluster radius.43 Thus, the investigated size range is too narrow to
observe a maximum. We emphasize that from the viewpoint of the
fractal dimensionality, even the clusters with k > 10 are far from
being liquid droplets. At the same time, according to our discus-
sion, they obey the classical thermodynamics of macroscopic liquid
droplets.

To study the temperature dependence of the cluster struc-
ture, it is convenient to introduce the reduced structure parameter
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ν = (η − η̄)/Δη, where η̄ = (η2 + η3)/2 and Δη = η2 − η3. It is seen
in Fig. 8 that, albeit η, η̄, and Δη are functions of k (we adopt the
same values of η2 and η3 as in Fig. 7), ν is almost independent of
the cluster size (for the solid-like configuration, ν = −1/2, and for
the chain-like one, ν = 1/2). For T ≥ 4006 K, dots represent the data
from MD simulation of an equilibrium vapor shown in Fig. 7. For
T < 3000 K, the cluster number density in the equilibrium vapor is
vanishingly small. Hence, we had to simulate individual equilibrated
clusters using a standalone MD procedure, which was realized as
follows. The cluster of seven or nine gold atoms initialized in the
solid-like configuration at T = 0 was placed in the 8 × 8 × 8 nm3 MD
simulation box, and the periodic boundary conditions were imposed
along all three dimensions. The cluster was thermalized using the
Langevin thermostat during a time long enough to equilibrate the
cluster potential and kinetic energy at the chosen temperature. Then,
the simulation was performed, during which the atom configura-
tions were saved. The time frame separation was sufficiently long
to ensure statistical independence of the saved data. The simula-
tion was stopped when the first atom evaporation event occurred;
then, the run was repeated until sufficient statistics was collected. At
T > 2200 K, the thermostat equilibration time becomes longer than
the waiting time for evaporation. Therefore, the equilibrated clus-
ters at higher temperatures cannot be obtained using this simulation
technique.

Figure 8 demonstrates a good correspondence between the
results for individual clusters and vapor. It is seen that for gold
clusters, the structural transition takes place in a wide temperature
range, and its characteristic temperature T0, at which ν = 0, is much
higher than the cluster melting temperature (<1000 K). Approxi-
mation of all shown simulation data by a parabola results in the

FIG. 8. Reduced structure parameter as a function of the temperature from MD
simulation of individual clusters (crosses and squares) and equilibrium vapor
(pluses and diamonds). Crosses and pluses indicate the cluster size 7, and
squares and diamonds indicate the cluster size 9. The data from simulations are
fitted by a parabola (solid line). The dashed line marks the boundary between
the domains of predominant solid-like and chain-like configurations; labeled is the
transitional temperature T0 at which ν = 0.

FIG. 9. Bond length distribution functions for the clusters of different sizes (solid
lines, see legend) as compared to the radial distribution function for liquid gold
(dashed line) from MD simulation. T = 6004 K.

estimation T0 = 2500 K, which is in a satisfactory agreement with
the rough assessment of the structural transition temperature (18)
and (19), T0 = 3513 K. One can conclude that, at T ≥ 4006 K, the
clusters are predominantly in the chain-like state, which justifies the
virtual chain approximation discussed in Sec. III A.

The structure of clusters can also be characterized by the BDF
f (ξ), where ξ = r/a. By definition, f (ξ) dξ is the probability that the
dimensionless distance between given pair of atoms pertaining to
the cluster of the size k lies in the interval from ξ to ξ + dξ, so that
∫
∞
0 f (ξ)dξ = 1. BDFs for the clusters of different sizes at different

temperatures are shown in Figs. 9 and 10 and compared with the

FIG. 10. Bond length distribution functions for the clusters (k = 7, solid lines)
as compared to the radial distribution function for liquid gold (dashed lines) at
T = 4006 K (blue lines) and T = 6004 K (red lines).
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radial distribution functions (RDFs) for liquid gold. The BDFs are
calculated based on the MD simulation of equilibrium vapor while
the RDFs, on the MD simulation of a two-phase system. Figure 9
shows a gradual emergence of the second maximum in BDFs as k
is increased or temperature is decreased. It is seen that positions of
the first and second maxima of BDFs shift toward larger distances
with the increase in k until the limit of bulk liquid is reached. The
same trend is seen in Fig. 10 for different temperatures. It is worth
mentioning that observable maxima both of BDFs and of RDFs shift
toward larger distances as the temperature is decreased. Thus, this
trend is opposite to that observed for the Lennard-Jones liquid.44

For the highest temperature, the second maxima are almost absent
for the clusters with k < 10, which is a manifestation of the chain-
like cluster structure. For k > 10 or at the lowest temperature, Figs. 9
and 10 demonstrate a similarity between the BDFs and RDFs of
a liquid. This is due to formation of the cluster core. Thus, anal-
ysis of the cluster BDFs agrees with that based on the structure
parameter η.

V. CONCLUSION
To summarize, we have performed MD simulation of the equi-

librium dense gold vapor in the vicinity of the saturation line in a
subcritical region, where the vapor non-ideality is primarily due to
the presence of clusters comprising up to several tens of atoms. For
this purpose, we have developed a new EAM potential that, in con-
trast to its previous versions, is capable of accurate reproduction of
the liquid gold surface tension along with the gold dimer binding
energy, which are the key characteristics for a correct simulation
of both thermodynamic and structural cluster properties. In this
respect, a good agreement with the cold cluster energies calculated
on the basis of different DFT versions is noteworthy. An agreement
between the pVT data from MD simulation and experiment is also
worth mentioning. Since the new EAM potential proved to be effec-
tive for the bulk solid, liquid, and gas, as well as for the arbitrary size
clusters, it could be also used for the simulation of phenomena asso-
ciated with high energy density input in condensed matter such as
laser-induced vaporization and ablation followed by generation of
nanoparticles.

The data from MD simulation enabled us to analyze the clus-
ters present in the vapor. In particular, the cluster size distribution
was compared to that obtained from different models, TPM and
LDM, and the reduced Tolman length of gold liquid–vapor interface
δ ≈ 0.16 was determined from these distributions. It was found that
both approaches yield almost the same results in a wide size range
from the dimer to the macroscopic droplet. This means that the
“hot” gold clusters are probably the most “classical” objects among
other clusters. An agreement between the compressibility factor cal-
culated for the gold vapor treated as an ideal mixture of clusters with
different sizes and the wide-range EoS33 justifies the assumptions
of TPM.

We have investigated the peculiarities of spatial arrangement of
atoms comprising the lightest gold clusters. An appropriate struc-
ture parameter, η, the ratio of the maximum to average distance
between the atoms pertaining to the same cluster averaged over the
cluster ensemble, is a good index of the cluster fractal structure.
A comparison between ηs for gold clusters and the model objects
whose fractal dimensionality is known beforehand shows that the

clusters of less than ten atoms are most similar to the freely jointed
chains with the fractal dimensionality of two. Thus, it was revealed
that such clusters could be found in the chain-like configurations
analogous to those previously found for the nonmetallic clusters in
the argon-like vapor, in which atoms interact via a pairwise poten-
tial. A temperature-driven transformation from the solid-like to
chain-like structure is a structural transition. The proposed estima-
tion of the temperature range, where this transition can occur for
the metal-bond clusters, shows that the transition temperature is
essentially higher than the melting temperature.

For investigation of the dependence of cluster structure on tem-
perature, the reduced structure parameter ν was introduced. For
the lightest clusters, this parameter proved to be independent of
the cluster size. Its temperature dependence obtained using MD
simulation of equilibrium vapor and individual clusters is indica-
tive of the fact that the transitional temperature range is quite
wide. The temperature of its central point is well above the gold
melting point and amounts to ∼2500 K, which correlates with the
estimation from the virtual chain approximation. The results of
MD simulation show that the fraction of chain-like configurations
decreases with the decrease in temperature. However, the virtual
chain approximation is still applicable for the gold clusters at tem-
peratures higher than 2500 K. Analysis of the cluster BDFs illus-
trates this conclusion: the second maximum of BDF almost vanishes
for the small clusters with k < 10, but it is visible for the larger
clusters.

An open issue is whether metal clusters other than gold have
the reduced Tolman length close to that obtained in this work,
i.e., whether all clusters with metallic bonds are almost “classi-
cal.” However, it seems unquestionable that this does not apply to
“anomalous” metals such as mercury whose small clusters have a
non-metallic bond type.

SUPPLEMENTARY MATERIAL

See the supplementary material for a detailed discussion of the
EAM potential development for gold. The newly developed potential
is available in both a rational function set and a tabulated form for
the LAMMPS simulation package

APPENDIX: EAM POTENTIAL FOR GOLD
To develop a potential capable of a correct reproduction of the

gold phase diagram in a wide range of compression and tempera-
ture, the stress-matching method28,45,46 is used here. The develop-
ment of interatomic potential will proceed through the following
well-defined steps. The first step involves generating a database of
the experimental data extrapolated to zero temperature (like the
elastic constants, cohesion energy, and lattice constants) and the
first-principle cold stress tensor curves obtained by density func-
tional theory (DFT). The second step involves fitting the EAM func-
tional parameters to the database, which, in its turn, produces sev-
eral good EAM parameter sets (candidates). For the last step, which
requires MD simulations, the best potential is selected from the can-
didates depending on how well they reproduce important experi-
mental properties not included in the fitting, such as the melting
temperature and the surface tension. Final validation may be per-
formed by simulation of material properties of interest, such as the
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vacancy formation and migration energies, the surface tension as a
function of temperature, the melting line (melting temperature vs
pressure) and the shock Hugoniot (longitudinal stress vs volume),
and comparing calculated results with the available experimental
data. Because for shock waves with the pressures of up to a few hun-
dred GPa, the thermal energy and the pressure are notably smaller
than the corresponding cold energy and pressure in condensed-
phase materials, we can expect that the potential provides also a
reasonable thermodynamics of simulated material in a wide range of
temperatures.

As in the original work,28 the fitting database contains the
stress tensor components σαβ(V) = −pαβ(V) calculated by the DFT
ABINIT code in the cold fcc lattice under continuous hydrostatic
and uniaxial deformation along the [100]-axis. The fitting proce-
dure implies also the constraints of monotonic behavior of pαα(V),
including the requirement that the sound velocity increases with
the compression. Experimental bulk modulus of 182 GPa and elas-
tic constants of c11 = 204 GPa, c12 = 171 GPa, and c44 = 55 GPa47

extrapolated to T = 0 K, the equilibrium density of 19.4963 g/cc
with the lattice parameter of a = 0.406 365 nm, and the cohesive
energy 367.61 kJ/mol48 of gold are also included in this database.
Apart from those mentioned above, the experimental vacancy for-
mation energy of 1.4 eV, the unrelaxed stacking fault energy of 0.06
J/m2, and the surface energy of solid γs(111) = 1.56 J/m2 are added
to extend the database. It is worth mentioning that, since the sur-
face energy γs(111) of solid is not well-known, it was adjusted several
times in fitting the intermediate potential candidates to obtain bet-
ter agreement with the experimental surface tension of liquid gold at
the melting point.

For reasonable MD simulation of dense vapor, an employed
EAM potential must provide the dimer cluster energy very close
to the experimental one of E2 = 1.15 eV per atom;5 therefore, it
is also included in the database. As a result of forcing the candi-
dates to fit E2, our new potential gives E2 = 1.126 eV, as distinct
from much lower E2 = 0.3054 eV provided by another popular EAM
potential for gold.49 The mathematical form of the EAM poten-
tial, fitting methods, and the stress–strain curves is presented in the
supplementary material.

A good test of the new EAM potential is the calculation of bind-
ing energies for the cold (T = 0) Aun clusters (Table III). We include
the solid-like (nanocrystal) cluster configurations. Table III com-
pares our calculations with several versions of DFT. In DFT-TPSS
and DFT-PBE versions,9 the same nanocrystal configurations are
treated. The DFT-FSGB version5 based on norm-conserving pseu-
dopotentials and numerical atomic basis sets includes explicitly the
electron spin–orbit effect, which yields stable non-compact (chain-
like and plane) configurations. Note that the difference between
EAM and DFT is of the same order of magnitude as the differ-
ence between different DFT versions, and all size dependences of
the binding energy per atom are monotone. A satisfactory agree-
ment between EAM and DFT-TPSS and DFT-FSGB is worth men-
tioning. At the same time, EAM ensures the best extrapolation
to the limits of dimer and bulk (as compared to DFT-TPSS and
DFT-PBE).

The phase coexistence method is used to calculate the melting
temperature at nearly zero pressure. Using the Langevin thermo-
stat, a radial temperature profile T(r) ∼ r is applied to a free stand-
ing sphere of solid gold with the radius R = 50 nm. Because the

TABLE III. EAM binding energies per atom of Aun clusters (eV) vs three versions
of DFT calculations for different atom configurations. DFT-TPSS and DFT-PBE are
obtained from the linear approximations9 extrapolated to a wide size range (but
for n = 55 and 147). For DFT-FSGB, the result for the lowest-energy isomer is
shown.

n EAM DFT-TPSS9 DFT-PBE9 DFT-FSGB5 Experiment

2 1.126 1.318 1.303 1.15
3 1.594a 1.567 1.506 1.66
4 1.900b 1.724 1.635 2.12
5 2.061 1.836 1.726 2.28
6 2.210c 1.921 1.796 2.56
13 2.671d 2.231 2.050 2.96
38 3.060e 2.548 2.310
55 3.159f 2.632f 2.378f

98 3.296g 2.748 2.473
147 3.381f 2.818f 2.532f

∞ 3.970h 3.285 2.913 3.81

aTriangle.
bTetrahedron.
cOctahedron.
dIcosahedron.
eOctahedra.
fIcosahedra.
gTetrahedra.
hfcc.

temperature increases with the radius, an outer layer of the sphere
melts, but the central part remains solid if the chosen T(0) is
below and T(R) is above the melting point. After partial melting
of the sphere, the thermostat is turned off and the two-phase sys-
tem evolves as a NVE ensemble until equilibration between the
solid and liquid phases at the melting point Tm. It is found that
the new EAM potential provides Tm = 1318 K and the liquid
density ρℓ = 17.58 g/cc, which are close to the experimental data
Tm = 1337.33 K and ρℓ = 17.31 g/cc. The EAM potential49 provides
Tm = 1130 K by using the same coexistence method.

The liquid–vapor binodal is also calculated with the phase coex-
istence method. Initially, a sufficiently thick solid slab, which is
infinite in y-axis and z-axis, was placed in a MD box with periodi-
cal boundary conditions along all three axes. The thermostat heats
and melts the slab, which results in a free standing plane liquid
film surrounded by vacuum in the x-direction. Evaporation of the
liquid produces a gas whose density increases until the saturated
vapor density is reached. Then, the thermostat is turned off, and
the production simulation starts to gather data. Figures 11–13 show
the calculated binodal line in the T–ρ, p–ρ, and p–T phase planes,
respectively.

The obtained equilibrium liquid–vapor systems are used for
calculation of the surface tension as a function of temperature.
According to the mechanical definition of surface tension σ = ∫[pn(x)
− pt(x)]dx, where pn and pt are the normal and tangential (with
respect to the liquid film) components of the pressure tensor,
respectively, and integration is performed over a thin interphase
layer.42,44 Due to the mechanical equilibrium between vapor and
liquid, the pressure pn(x) = ps(Ts) is constant throughout the
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FIG. 11. Liquid–vapor binodal line for gold in the T–ρ phase plane. Open circles
correspond to the vapor and solid circles, to the liquid coexistence state obtained
from MD simulation. The blue dashed line shows data from the wide-range EoS.33

Red cross denotes the critical point at ρcr ≈ 3.99 g/cc and Tcr ≈ 9.25 kK.

x-axis, while pt is negative within the interphase layer and pt = pn
outside of it. At the experimental melting temperature, our new
EAM potential yields σ = 1.104 J/m2, which is close to the experi-
mental value σ = 1.145 J/m2,51 while the surface tension from the
original EAM potential28 is twice as low, σ = 0.565 J/m2, and Gro-
chola’s potential49 provides the notably higher surface tension of
1.295 J/m2.

Obtaining the equilibrium two-phase systems in the vicinity
of the critical point is extremely complicated in MD simulation.
The closest point with the clear density separation was at T = 9.2
kK in our simulations. We estimate the critical temperature as Tcr
≈ 9.25 kK because the large density fluctuations for T > 9.25 kK lead
to an inability to realize two separated phases.

It is worth mentioning that the usage of surface tension for esti-
mating the critical temperature is unreasonable since the calculation

FIG. 12. Liquid–vapor binodal line for gold in the p–ρ phase plane. Open circles
correspond to the vapor and solid circles, to the liquid state obtained from MD
simulation. The blue dashed line shows data from the wide-range EoS.33 The red
cross denotes the critical point at ρcr ≈ 3.99 g/cc and pcr ≈ 0.22 GPa.

FIG. 13. Liquid–vapor coexistence line for gold in the p–T phase plane. Open
circles correspond to the vapor and solid circles, to the liquid states obtained from
MD simulation. The blue dashed line shows data33 from the wide-range EoS. Black
crosses are the experimental data.50 The red cross denotes the critical point at
pcr ≈ 0.22 GPa and Tcr ≈ 9.25 kK.

of tension is less accurate than the calculation of density. The calcu-
lated surface tension shown in Fig. 14 approaches zero and becomes
very inexact for T > 9 kK, whereas the liquid–vapor transition layer
is still well-defined. The surface tension can be fitted by σ(T) = σ∗θν,
where θ = 1 − T/Tcr and σ∗ and ν are the fitting parameters. With
the fixed Tcr ≈ 9.25 kK, fitting the surface tensions obtained for all
simulated temperatures in the range from 1.33 kK to 9.14 kK yields
σ∗ = 1.337 J/m2 and ν = 1.26.

The binodal pressure approaching the critical point is assumed
to be proportional to θ, which yields pcr ≈ 0.22 GPa. An estimate
of the critical density can be derived from the rectilinear diameter
law ρcr − (ρℓ + ρv)/2 ∝ θ, where ρv is the vapor density. Using the
densities ρℓ = 5.734 g/cc and ρv = 2.244 g/cc obtained from MD data
at the highest T = 9.14 kK, at which the density can still be measured
with a good accuracy, we arrive at ρcr ≈ (ρℓ + ρv)/2 = 3.99 g/cc.

FIG. 14. Surface tension of a flat liquid–vapor interface as a function of temperature
from MD simulation (circles) and its approximation by Eq. (A4) using the critical
index dependence (red line). The experimental fits are presented by Eqs. (A1)–
(A3). The phase separation vanishes at the critical temperature Tcr ≈ 9.25 kK.
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Figure 14 shows the calculated surface tension in comparison
with the experimental linear fits,

σ(T) = 1.105 − 0.28(T − 1.336), (A1)

σ(T) = 1.145 − 0.20(T − 1.338), (A2)

σ(T) = 1.150 − 0.14(T − 1.337), (A3)

σ(T) = 1.337(1 − T/Tcr)
1.26, (A4)

where the temperature is measured in kK and the surface tension, in
J/m2. The linear fit (A1) of the experimental data in the temperature
range from 1.35 kK to 1.775 kK was reported in Ref. 52. The average
fit (A2) of many experimental data limited by the maximum temper-
ature of 1.381 kK is borrowed from the review in Ref. 51. The linear
fit (A3) for temperatures up to T = 1.873 kK was obtained recently
in Ref. 53. Equation (A4) fits our MD results with a good accuracy,
as it is seen in Fig. 14, where it lies between the above-mentioned
experimental fits.
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